“数理讲堂”2024年第42期:Fast Algorithms for FCI Excited States

发布时间:2024-11-25 供稿:数理与统计学院 分享至:

主题:Fast Algorithms for FCI Excited States

时间:11月26日 13:00-14:30

地点:腾讯会议(会议号:794-932-223)

主持人:邵文婷副教授

报告人简介:

李颖洲,复旦大学数学科学学院青年研究员。2012年于复旦大学取得学士学位,2017年于美国斯坦福大学取得计算数学博士学位,2017年至2020年在美国杜克大学数学系担任科研助理教授。设计核方法快速计算,分析CNN万有逼近,提出求解高频波方程的深度神经网络结构与学习算法;设计椭圆方程的算法,实现上万核集群高效并行;开发量子算法,在量子计算机上求解激发态问题。已在国际顶尖计算数学、应用学科杂志(ACHA, JCTC, SIOPT, SISC, SIMAX等等)发表论文40余篇。主持国家自然科学基金委面上项目、上海市基础研究特区交叉项目等。入选国家高层次海外青年人才计划。

讲座简介:

An efficient excited state method, named xCDFCI, in the configuration interaction framework, is proposed. xCDFCI extends the unconstrained nonconvex optimization problem in CDFCI to a multicolumn version, for low-lying excited states computation. The optimization problem is addressed via a tailored coordinate descent method. In each iteration, a determinant is selected based on an approximated gradient, and coefficients of all states associated with the selected determinant are updated. A deterministic compression is applied to limit memory usage. We test xCDFCI applied to H2O and N2 molecules under the cc-pVDZ basis set. For both systems, five low-lying excited states in the same symmetry sector are calculated together with the ground state. xCDFCI also produces accurate binding curves of carbon dimer in the cc-pVDZ basis with 10−2 mHa accuracy, where the ground state and four excited states in the same symmetry sector are benchmarked.

打印
上一篇:下一篇: